EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-JRNL-204167

Parallel Algebraic Multigrids for
Structural mechanics

M. Brezina, C. Tong, R. Becker

May 14, 2004

SIAM Journal on Scientific Computing



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.



PARALLEL ALGEBRAIC MULTIGRIDS FOR
STRUCTURAL MECHANICS *

MARIAN BREZINA t, CHARLES TONG ¥, AND RICHARD BECKER §

Abstract.

This paper presents the results of a comparision of three parallel algebraic multigrid (AMG)
preconditioners for structural mechanics applications. In particular, we are interested in investigating
both the scalability and robustness of the preconditioners. Numerical results are given for a range
of structural mechanics problems with various degrees of difficulty.
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1. Introduction. Krylov methods with algebraic multigrid preconditioners have
been demonstrated to offer fast convergence rates as well as good parallel efficiency
for the iterative solution of linear systems arising from discretizations of many ellip-
tic partial differential equations. Two classes of algebraic multigrid methods have
gained popularity - the classical AMG originally developed by Ruge and Stiiben [15]
(RS), and smoothed aggregation multigrid (SA) proposed by Vanék, Mandel and
Brezina [20, 18]. Also, improvements to SA have been made to handle more diffi-
cult problems such as Maxwell’s equations [3]. In this paper we investigate another
improvement to SA to handle difficult problems in structural mechanics. This im-
provement involves enriching the prolongation operator using low energy eigenvectors
of subdomains in a finite element framework. The idea of enriching the coarse space
was already recognized in [21] in conjunction with treatment of high-order equations,
and was later expanded into an adaptive procedure similar to the one presented here
by Brezina, Heberton, Mandel and Vangk in [5] as a general principle to eliminate con-
vergence problems due to local irregularities of the finite element discretization. The
latter method was, however, limited to two-levels. Our implementation generalizes
this coarse-space enriching approach to multi-level, replacing the expensive subdo-
main solves with smoothings in the intermediate levels (we call this method GSA, an
acronym for generalized smoothed aggregation.)

Parallelization issues for AMG preconditioners are also considered in this paper.
The application of algebraic multigrids involves two phases: the setup phase and the
solution phase. A typical setup phase consists of coarse grid selection, construction of
prolongation operators, and creation of coarse grid matrices. The original coarse grid
selection procedures in both RS and SA are sequential in nature. Efforts to parallelize
the coarsening step have been reported in [17, 10]. The construction of coarse grid
matrices using triple matrix product can be parallelized in a straightforward manner,
but perfect scalability is difficult to achieve. Scalability issues in the solution phase
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are associated mainly with the parallel smoothers, and with solution of the coarse
grid problem. In this paper we discuss some of these parallelization issues in detail
and make recommendations given different options.

This paper is organized as follows: in section 2, we give an introduction of the
three AMG methods in question. Section 3 is dedicated to expounding the GSA meth-
ods and providing theoretical motivation for the method. Section 4 describes in more
detail the parallel aspects of the setup and solution phases. Numerical experiments
will be presented in section 5, followed by a few afterthoughts in Section 6.

2. A Brief Review of Algebraic Multigrids. AMG methods can be used as
independent linear solvers for solving linear systems of the form

) Az =)

where A € R™"*™ is a positive definite matrix and z,b € ™. In practice, they are
often used as preconditioners in the preconditioned conjugate gradient or generalized
minimal residual method. A typical V-cycle AMG is given as follows (by calling
MG(Ag, b, u,0)):

ALGORITHM MG(Ak, bk, Uk, k)

1. If level k is the coarsest level, uy = A,;lbk, return

2. up = Sk(Ag, b, ur) /* pre-smoothing */

3. vy =br — Apup /* residual calculation */
4. bpy1 = Ry x 1y, /* restriction */

5. V41 = 0

6. MG(Ak+1, brr1, Vpt1, £+ 1)

7. up = up + Proga /* coarse grid correction */
8. up = Sp(Ag, bi, ug) /* post-smoothing. */

Here Sy, Ry, and Py are the smoothing, restriction, and prolongation operators,
respectively.

Application of AMG methods consists of distinct setup and iteration phases. In
the setup phase, the transfer operators Py, Ry, are created based on the operator Ay,
and the multigrid smoothing operators Sy are set up. Once Pj becomes available,
we define Ry = PI and construct the coarse problem using the Galerkin formula,
Apy1 = RpArP,. The hybrid Gauss-Seidel smoother is chosen for our numerical
study and its performance aspects will be discussed later.

The main idea of multigrid is based on the complementary roles of the multigrid
smoothing and coarse-grid correction procedures. In order to have a well-convergent
multigrid, the solution error not eliminated well by smoothing must be eliminated
well by coarse grid correction. As the prolongation defines the coarse spaces, it plays
a critical role in transmitting and eliminating the error modes between different grid
levels. In the following subsections we describe two different ways of selecting the
coarse variables and the corresponding prolongation operators.

2.1. The Classical Algebraic Multigrid. Setting up the coarse grid structure
in the classical algebraic multigrid [15] (RS) is guided by two principles:
P1: Errors not efficiently reduced by smoothing must be approximated well by the
range of interpolation, and
P2: The coarse grid correction must efficiently eliminate fine grid error in the range
of interpolation.



P1 is satisfied by a two-pass coarse grid selection and the Ruge Stiiben interpo-
lation formula [15], while construction of coarse problems using the Galerkin formula
allows P2 to be satisfied.

A typical setup phase for RS is as follows [7]:

RS Setup Phase:
1. Set k =0.
2. Partition the level k set of points Q¥ into disjoint sets C* and F*.
(a) Set QF+l = Ck,
(b) Define interpolation Pj.
3. Set Rk = Pg and Ak+1 = RkAkPk.
4. If Qp41 is small enough, stop. Otherwise, set k =k + 1
and go to step 2.

Step 2 begins by forming a set of dependencies for each point ¢ (a point can be
a single unknown in the scalar case or a set of unknowns in the system case) in the
current grid level defined by

(2) Si={j#i:—ay < aflrclgg((—aik)};

where « is the strength threshold for pruning weak couplings between variables. All
points in the domain are chosen either as coarse or fine points. A set of interpolation
points Cj is then selected for every fine point . Since error is more effectively smoothed
in the direction of influence, a suitable criterion for selecting C; is C; = S; N C (C is
the set of all C' points.)
Two criteria for choosing the F' and C' set are that
P3: For each i € F, each j € S; is either in C or S; NC; = 0, and
P4: (' is a maximal set with the property that if ¢ and j are both coarse points,
then j € S; and ¢ € S;.
P3 says that if ¢ is a fine point, then the points influencing ¢ must either be coarse
points or must share a common coarse point with i. P4 is enforced to keep the
coarse grid as small as possible. Since it may not be possible to satisfy both criteria
simultaneously, a common practice is to enforce P3 guided by P4. This commonly
takes form of a two-pass coarse selection, which proceeds by first choosing a maximal
independent set of coarse points, followed by patching up the C set to satisfy P3.
Once the coarse grid set C' has been determined, the interpolation formula is
prescribed in the form:

(Potiis1)i = (wgt1)1 if i € C' and ¢ and [ are the same point
kokt1)i = EjEC’,' wij(uk+1)j ifi € F.
Details of computing the quantities w;; can be found in [15].

2.2. The Smoothed Aggregation Multigrid. The coarse grid construction
for SA differs from that of RS in that, instead of choosing the coarse grid set as a
subset of the current grid nodes, each fine grid node is assigned to a unique aggregate.
Each aggregate corresponds to one or more equations in the coarse grid operator. The
first coarsening step is thus to form a collection of aggregates covering all the grid
nodes (however, the equations corresponding to the essential boundary conditions are
usually left out). The goal is to have uniformly shaped aggregates. The optimal
aggregate size for the standard method has a diameter three, i.e., three nodes along
the diameter (small aggregates may result in higher overall complexity, but very large
aggregates may result in poor convergence rates unless a nonstandard prolongator
smoother is applied). A basic aggregation procedure proceeds as follows [17]:
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SA Aggregation step: (Given a graph representing the node connectivity)
Phase 1 : Form initial set of aggregates: for i = 1 to n,
a. if node i has been aggregated or it is adjacent to an aggregated
node, go to the next node.
b. Otherwise, select it as a root node, and define a new aggregate as
node ¢ plus all its neighbors.
Phase 2 : Put unaggregated nodes into existing aggregates: for i = 1 to n,
a. If node 7 has been aggregated, go to the next node.
b. Otherwise, put it in the aggregate to which one of its neighbors belongs.
Actual implementation can add complexity to this aggregation algorithm. For
example, more phases may be needed if aggregate size control is incorporated. Also,
different criteria for choosing host aggregates in phase 2 may be prescribed to enhance
performance.
The aggregation step is followed by forming the tentative prolongation operator
Py, the formula of which, in the simplest case of piecewise constant interpolation, is
given as follows:

(3) (Prupi1)i = (upy1); if i € aggregate;

For solving systems of partial differential equations, aggregation is typically per-
formed on the nodes in the computational grid. Three-dimensional elasticity prob-
lems, for example, have three unknowns per node corresponding to displacements in
the three orthogonal directions. Thus, in the case of structured hexahedral mesh,
each aggregate would ideally contain 27 nodes or 81 unknowns. In addition, instead
of using piecewise constant interpolation for each aggregate, rigid body modes or
near null space vectors can be provided for defining P,. The number of coarse grid
equations for each aggregate is then the number of null space vectors provided. For
three-dimensional elasticity, six rigid body modes can be computed from the nodal
coordinates which are readily available from most applications.

More robust prolongators can be constructed by smoothing the tentative prolon-
gators. For example, applying a damped Jacobi smoother gives:

(4) P, = (I —wD, ' 4;) P,

where Dy, is the diagonal of Ay, and w is the damping factor related to the maximum
eigenvalue of the scaled matrix D,;lAk. Convergence theory [18] proves that this
prolongation smoother is needed to give convergence rates only mildly dependent on
the grid size.

3. Generalized Smoothed Aggregation. For many applications, the knowl-
edge of a small number of near-kernel components suffices to construct a robust
smoothed aggregation solver. However, for difficult problemes, it may be beneficial
or indeed necessary to generalize the method.

In order to motivate the GSA method, we first recall the theoretical convergence
estimate derived in [19]. Throughout this section we drop the level indices in the
notation for the multigrid operators. Let n, m denote the dimensions of the Euclidean
spaces associated with the fine and coarse spaces, respectively. We further define Ag =
S2? A, where S denotes the prolongator smoother. Then for the two-level smoothed
aggregation method employing a pre-smoother with a linear part given by S and a
post-smoother with linear part given by

"7 w
©) s=1 Q(AS)AS
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the following result holds.
THEOREM 3.1. Assume that there exists a positive constant Cypx such that:

A

1. There is a linear mapping, Q, of R™ onto Range(P) such that

02
6 I—Q)ul)® < = |ju||} VYue R
(6) (I = Qull” < Q(AS)II 14
2. The prolongator smoother, S, is symmetric, commutes with A, and satisfies
o(S) < 1.

Let e; denote the error after i iterations of SA-AMG with P = SI:’, and ef = Se; the
final error smoothed by the prolongator smoother. Then it holds that

lef 1% < (1= C)?leoll,
where

Co2i(2 — &)

apx

14 Cappd(2 — @)

, and & is the damping parameter from (5).

As the assumption 2. of Theorem 3.1 is usually easy to satisfy, our attention is
focused on minimizing the constant Cypx in (6). We note that the left-hand side of (6)
depends only on the tentative prolongator, while the prolongator smoother is present
only in the form of a bound on the spectral radius of Ag in the denominator of the
right-hand side.

The smoothed aggregation method thus possesses two mechanisms for ensuring
good convergence properties. One strategy leading to improved constant Cypx relies
on developing more powerful prolongator smoothers, S, thus forcing g(S24) < o(A).
This approach had been investigated in [19], where a two-level method with conver-
gence properties independent of the size of the coarse grid was developed.

Another way to improve C,px is based on appropriately enriching the range of
the tentative prolongator P, thus minimizing the left-hand side in (6). This approach
can, naturally, be combined with the improvement of S for a compound benefit.
Note, however, that in forming the prolongator P = SP used in the final method, all
columns of P must be multiplied by S. Hence, the effect of using an improved S is
global in nature. The corresponding smoothing of the coarse space basis functions is
thus appropriate for correcting global convergence phenomena tied to the differential
equation solved, and the use of nonstandard prolongator smoothers may thus be an
overkill if slow convergence of the method is rooted in local phenomena. In contrast,
due to the disjoint nature of the aggregate decomposition, the enrichment of the range
of P can be carried out locally one aggregate at a time.

As the emphasis of this paper is on parallel implementation, we are seeking a
procedure which would modify the iterative solver locally in the problematic regions.
We will thus focus on local enrichment of the range of the tentative prolongator P,
and refer interested reader to [19] for details on construction of S.

We will consider a decomposition of our computational domain, 2, into J nonover-
alpping subomains, ;,

C~

1

-
Il
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We assume that each (); is a connected cluster of elements. Denote by n; the number
of degrees of freedom in (2;, by A; the n; x n; local stiffness matrix corresponding to
Q;, and by N; the zero-one matrix mapping the degrees of freedom associated with Q;
into the set of global degrees of freedom in matrix A. Obviously, the stiffness matrix
A can be assembled from the local stiffness matrices A;:

J
(7) A= NANT.

i=1

We will utilize a system of large nodal aggregates {A;}/_, forming a disjoint
covering of the set of all nodes such that all nodes in A; lie in Q;. Such aggregates
are easily formed by assigning all the nodes in ; to 4;, and distributing any nodes
shared by more than one ; to exactly one of the corresponding aggregates at will.

To formalize this distribution of nodes, for each subdomain ; with number of
degrees of freedom n;, we define a zero-one diagonal matrix I; of dimension n; as

(8) (I)aa = 1 if degree of freedom d corresponds to a node in A;
Vdd =00 otherwise

We further define for each subdomain (2; a set of vectors {wy) Pl wg-i) €

Range(I;), and denote by W; the n; x m; matrix consisting of columns {wy)}gnzl
The tentative prolongator P : R™ s R" being able to represent exactly all functions
in {wg-z) }i%, over A; can then be defined by

J
9) Pz = Z N;W;z®
i=1

where z(?) denotes the segment of coarse degrees of freedom associated with aggregate
A;.
Theorem 3.1 guarantees that the rate of convergence of the two-level method is
—2

bounded by 1 — 14(:2’1‘2 under the assumption that there exists v € ™ such that
apx

2

® Ca X n
(10) I Polf < ol Vi€

Using the sparsity structure of P stemming from disjointness of the aggregates, we
can write for any u € R",

J
e = Polfay = 3 Ikt = Pl
i=1

where || - [|;2(4,) denotes the restriction of the Euclidean norm to the set of degrees of
freedom corresponding to the node in the aggregate A;, and P, ; denotes the super-
column of P corresponding to aggregate A; . Similarly, we write using (7)

J
llulld = (AN, Nl'u).
=1
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Thus, in order to satisfy (10) it suffices to satisfy over all aggregates 4; the inequality

. Cc2 .
(11) ||’LL - PU||122(A,-) S ﬁ(AzNzTU,NZTU) Yu € §Rn
Assuming fixed prolongator smoother S, the satisfaction of (11) depends solely on the
the selection of columns of P. We are thus lead to constructing P so that

(12 nf fu= Pl = (0= Qi < Adlul, Ve e R,
where Q; = W;(WIW;)~'WT is the R"-orthogonal projection onto the Range(W;).
The relationship (12) can be reformulated as a generalized eigenvalue problem for
I;(I — @Q;)I; preconditioned by A;. The constant A; in (12) can be decreased by find-
ing the largest eigenvalue of the generalized eigenvalue problem and adding the corre-
sponding eigenvector to the range ot ;. This amounts to introducing new columns
corresponding to aggregate A; into the tentative prolongator P. This procedure can
be repeated until (12) is eventually satisfied with a uniform constant A > A; for all
i=1,...,J.

To reduce cost associated with the solution of the local generalized eigenvalue
problem, we instead solve the local eigenvalue problem for A;. The following lemma [5]
justifies this reduction in cost.

LEMMA 3.2. Let wj(-i) = I,-uig-i) , where w](."’ are the eigenvectors of matrix A;
corresponding to the eigenvalues of A; that are smaller than % > 0. Then

(IZ(I — Qi)Iiu,U)g‘Rni S A”U”il Yu € R

The coarse-space enriching technique we have thus far described in this section is
based in the two-level method proposed in [5], which utilized aggregates A; covering
entire subdomains 2; and necessitated the use of special prolongator smoothers in
order to guarantee good convergence. Here we are interested in providing a multilevel
generalization. Since the cost of computing the near null space vectors for the global
matrix can be prohibitively high, we only compute the near null space vectors for the
subdomains ; created by the domain partitioner. The setup cost is still relatively
high, but it can be performed in parallel with no interprocessor communication. To
keep cost down, the size of each subdomain is limited to a few thousand nodes.

Since the computation of eigenmodes on each subdomain is performed indepen-
dently of one another, aggregation across the subdomain boundary is not allowed, to
facilitate alignment. Consequently, the coarsest grid has number of unknowns at least
J X u where J is the number of subdomains and p is the desired number of null space
vectors. When both J and pu are large, the coarsest problem can become too large for
direct solution.

Our current GSA method differs from that in [5] in that each a standard aggrega-
tion coarsening will be applied on each ;. Thus ;, and hence A; is subaggregated
into a number of small, standard-sized aggregates, A; = |JAi;. The eigenmodes of
A; are then restricted to these smaller aggregates A;; and the tentative prolongator
used in the current GSA can be written as

J i

P.’L’ = Z ZN”WU.’EO),
i=1 j=1
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where W;; denotes restriction of W; to A;; and Nij is a zero-one matrix mapping the
degrees of freedom in A;; into the set of global degrees of freedom.

Since the set of coarse grid basis functions generated by P is a refinement of that
generated by P, we trivially obtain

Wi
D M= Pa sy < llu— PaOlE ) < Allully,
i=1

Thus the standard convergence theory for the smoothed aggregation method [18] guar-
antees convergence. As a result of using the standard aggregates, P can approximate
well not only the computed set of eigenmodes, {wg-’) }”:"1, but also modes with locally
similar character. This reduces the number of eigenmodes that need to be computed.

We note that a coarse space enrichment similar to the one described here has
been used in the context of classical AMG in the AMGe class of methods [4, 6], and
also by Mandel [13, 14] in the context of two-level domain decomposition suitable
for p-version finite elements. Reference [9] describes a coarse-space enrichment for a
non-smoothed aggregation method using very small element agglomerates, under the
assumption that the local element matrices are available.

4. Parallel Implementation Issues. The original coarse grid selection algo-
rithms for both RS and SA are inherently sequential. In the solution phase, the
primary factor for parallel efficiency is the use of parallel and robust smoothers. This
section briefly reviews efforts pertaining to these two issues.

4.1. Parallel Coarsenings for RS Algebraic Multigrid. Several parallel
coarsening algorithms have been proposed and tested successfully - the parallel RS
coarsening [8], the CLJP coarsening [7], and the hybrid (or Falgout) coarsening. The
parallel RS coarsening first performs independent local coarsening within each pro-
cessor, followed by coarsening on the processor boundaries. The CLJP coarsening is
a form of a parallel maximal independent set algorithm [11, 12] modified to enforce
the coarsening criteria. The hybrid coarsening uses the RS coarsening interior to the
processors and CLJP coarsening on the boundaries. The relative performance of these
algorithms varies dependent on the applications. Since the CLJP algorithm gener-
ally gives better results for unstructured grid problems, it is used in our numerical
experiments.

4.2. Parallel Coarsenings for SA Algebraic Multigrid. Reference [17] de-
scribes three parallel aggregation algorithms. The coupled aggregation scheme pro-
ceeds by having each processor first separating all points assigned to it into the interior
and border points. Border points are those which share a grid edge with a point on
another processor. Subsequently, this scheme aggregates the border points before
aggregating the interior points. This scheme has the disadvantage that some proces-
sors may have to wait until other processors have completed aggregating their border
points. The worst case scenario would require a wait time proportional to P1/3 where
P is the number of processors. However, the scheme can give significantly better
aggregates.

The second parallel aggregation scheme is based on maximally independent set
(MIS). In brief, the widely studied parallel MIS algorithms can be applied to the square
of the matrix representing grid connectivities. This scheme has the disadvantage that
it requires computing the square of a matrix.
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The third scheme, which is our choice in our numerical studies, is called the decou-
pled aggregation scheme. This scheme lets each processor form its set of aggregates
independently of one another. It is very simple to implement and it generally gives
good performance. However, its performance depends a great deal on the domain par-
titioner. Furthermore, not allowing the aggregate to cross the processor boundaries
can result in slightly higher overall grid complexity (the total number of grid points in
the grid hierarchy) and a large coarsest grid when the number of processors is large.
We remedy the latter by triggering a processor aggregation step (forming processor
connectivity graph and grouping processors into aggregates) when the coarsest grid
is too large.

4.3. Parallel Smoothers. Smoothers play a critical role in the AMG solution
phase. On sequential computers, Gauss-Seidel (GS) is usually the smoother of choice.
On massively parallel computers, however, the choice of smoother is less clear. The
GS smoother can be modified for higher degree of parallelism by combining it with the
Jacobi smoother. By preserving the sequential nature of GS within each processor and
exploiting the parallel nature of Jacobi across processor boundary, a hybrid GS-Jacobi
smoother has been demonstrated to be quite effective on small number of processors.
For massive parallelism, it suffers from slow convergence rates. Another approach is
to improve GS’s parallelism by using multi-coloring [1]. A limitation of this approach
is that there needs to be sufficient number of unknowns on each processor, and is
thus not an effective smoother on the coarse grids. Other efforts include the use of
polynomial smoothers [2] and Krylov smoothers preconditioned with Jacobi, block
Jacobi, or overlapped Schwarz, all with limited success.

In our numerical experiments, we use a variant of the hybrid GS-Jacobi smoother
given in [22]. The idea is to recover fast convergence rates by using under-relaxation
in GS and/or damped Jacobi across processors. The relaxation parameters can be
computed by a few conjugate gradient iterations.

5. Test Problems from Structural Mechanics. The test problems are taken
from the ALE3D code developed at the Lawrence Livermore National Laboratory.
The implicit integration algorithm in ALE3D for solid materials is based on an up-
dated Lagrangian displacement-based formulation. A set of nonlinear equations is
solved for equilibrium using the state and configuration at the end of a time step.
During the time integration, nonlinearities arise because of the material response and
configuration changes.

The basic equations are the momentum equations derived by starting with the
local dynamic equilibrium relation in a form suitable for a solid body

(13) pu =V -0 + pb
n-o=g
where u is the displacement vector, o is the stress tensor, b is the body force vector

per unit mass, p is the density, and g is the surface traction. Applying the weak form
and then integrating by parts yield

(14) / puy - udV + / o (Véu)Tdv — / n-o-dfudV — / pb - dudV =0
v \% s \%
where the colon signifies a double inner product, V is the volume, and S is the surface

of the body. Time integration is performed by using the full Newton-Raphson iteration
9



scheme represented by

dP

where P is the left hand side of Equation 14, and (A is the surface area)

(16) dP = / [do — (Vdu)' -0 + (V- du)o] : (Vou)'dV —
v
v /S [Z—lgl -du + %gz—ﬁ -du] - dudS —

db dlltt
/Vp[d_u] -du—}—/vp[d—u] - dudV.

These displacement-based Jacobian equations are solved with the finite element method]j
using linear elements on a hexahedral mesh. At each time step, corrections are added
to the previous estimate of the nodal displacements. The nodal displacements are
then used to calculate displacement gradients and strain increment tensors that are
passed to the constitutive model.

The constitutive relation we use cannot be written simply in terms of stresses and
elastic properties. It also depends on current loading. For a forward gradient stress
integration, the material stiffness would take the form:

Lijrs PTsPtuLtukl

(18) ijkl ijkl h+ PrsLysiy P’

i, 5,k 1,r,s,t,u=1---3

where L is the standard fourth order elasticity tensor, P is the derivative of the yield
surface with respect to the stress tensor and h is the material strain hardening.

5.1. The Spherical Shell Problem. The domain for the first problem is an
octant of a spherical shell depicted in Figure 1. The shell has three layers having steel
on the outside and inside layers and polycarbonate in the middle. Both elasticity and
plasticity are in the constitutive model. The forcing function is the small amount of
energy injected into the polycarbonate layer, causing the polycarbonate to expand
against the inner and outer layers. Equation 18 can be simplified to C = L in this
case as there is no plasticity.

5.2. The Crystal Plasticity Problem. This test problem (called TBar and is
shown in Figure 2) uses a crystal plasticity constitutive model given by

12 12
(19) Cijit = Lijit = > > LijmnQmnRE s Lroi

a=1 b=1

where Q® and R’ are each second order tensors for each of the 12 slip systems. As a
result, the global stiffness matrix is slightly nonsymmetric. Boundary conditions for
this test problem are forces applied at one end in the direction of the bar length and
the other end is tied down to prohibit displacement in the direction of the bar length.

5.3. The Bifurcation Problem. This test problem (called RBar and is shown
in Figure 3) involves bifurcation which occurs when the load applied to the uniform bar
is stationary while under continued deformation. The Considere criterion originally
developed in structural mechanics can be used to quantitatively predict the bifurcation

10
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strain. It is known as a geometric bifurcation since it is caused by and manifest in
geometry change, which is the diameter change in this case. At maximum load, the
deformation is arbitrary. A localized reduction in area can happen anywhere and the
energy dissipation would be the same. This problem has many solutions and any noise
in the solution process can pick up a mode (see Figure 4 for a possible deformation
configuration). As the load starts to decrease, the pattern is set and the solution is
again unique.

6. Numerical Experiments. The numerical experiments are run on two IBM
SP2 computers (to be called SP2-White and SP2-Blue from this point on) at the
Lawrence Livermore National Laboratory. The SP2-White computer has more than
500 nodes with 16 gigabyte of main memory per node. Each node has 16 Power3
processors running at 375 MHz each. The SP2-Blue computer has 264 nodes with 4
PowerPC 604e processors and 1.5 gigabytes of memory per node. Due to the scarce
availability of large number of processors (1000 or more) and the large disk space re-
quirement for storing the finite element meshes, our numerical experiments are limited
to a maximum of 512 processors. For the spherical shell problem, some performance
data were collected for RS and SA on 4000 SP2-White processors. The largest run for
RS is about 300 millions unknowns which consumes 200 iterations and 2000 seconds
for each solve. For SA we were able to successfully run even larger problem (610 mil-
lion unknowns, which takes about 500 iterations and 1500 seconds) due to its lower
memory requirements.

For both RS and SA, we prescribe one sweep of hybrid SSOR-Jacobi for both pre-
and post-smoothing. For RS, we choose different strength thresholds for best results
on different test problems. For SA, the strength threshold is 0 and no prolongation
smoothing is used for all test problems. In addition, the near null space vectors
(the 6 rigid body modes) are computed from the nodal coordinates from our finite
element package. For GSA, additional near null space information is calculated from
the element stiffness matrices.

6.1. Scalability Study for the Spherical Shell Problem. We study the
parallel performance of the spherical shell problem on the SP2-White computer using
the conjugate gradient method with RS and SA as preconditioners. Each processor has
about 100K unknowns, yielding more than 51 million unknowns on 512 processors.
The entire simulation takes about 10 linear solves, and the timing results are the
averages of all linear solves. Convergence criterion for the conjugate gradient is 1076.
The best strength threshold for RS is around 0.9 — 0.99 for this problem. We use
0.95 in our experiment. With this threshold the grid and operator complexities (grid
complexity is the ratio of the total number of rows in all A;’s with respect to Ag
while the operator complexity is the ratio of the total number of nonzeros in all
Ap’s with respect to the number of nonzeros in Ag) are approximately 2.1 and 2.5,
respectively. The corresponding grid and operator complexities for SA are 1.08 and
1.15, respectively. The timing results and iteration counts are shown in Figure 5 and
6.

These results show that both methods are relatively scalable (that is, the total
solution time grows slowly with the number of processors given the same problem size
per processor), with SA giving better scalability. We observe a substantial increase
in the solution time going from P = 128 to P = 256 even though the iteration counts
stay about the same. After eliminating the cause attributing to load imbalance,
we conclude the performance deterioration is probably due to higher memory access
conflicts for larger test problems.
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Fi1G. 3. The RBar Problem (subdomains in different colors)

Fi1a. 4. The RBar Problem (A possible deformation configuration)
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F1G. 6. Spherical Shell Problem Using SA Preconditioner

6.2. Scalability /Robustness Study for the Tbar Problem. Numerical ex-
periments for the Thbar problem are performed on the SP2-Blue computer. Each
processor has about 30K unknowns, yielding a total of more than 14 million un-
knowns for 512 processors. The generalized minimal residual (GMRES [16]) method
with a restart size of 200 is used for this problem due to nonsymmetry. The pre-
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Fi1Gc. 7. Tbar Problem Using RS Preconditioner

scribed convergence criterion is 1078, We use 0.9 as strength threshold for RS. With
this threshold the grid and operator complexities are about 2.1 and 3.4, respectively,
for all processor configurations. The grid and operator complexities for SA are 1.09
and 1.13, respectively. The numerical results given in Figure 7 and 8 are for the first
linear solve. We observe that starting from the second linear solve RS fails to converge
(stagnation occurs when the relative residual norm drops to about 10~2), while SA
takes many more iterations. We demonstrate in Figure 9 and 10 that GSA helps to
improve the robustness of SA.

From Figure 7 and 8, we observe that RS takes many more iterations than SA
to converge even for the first linear solve. From examining the convergence history
(not shown here) we further notice that the iteration count for RS would have been
reduced by a factor of 4 if the convergence criterion is raised to 10~6. We conclude
that, for low accuracy runs, RS and SA give comparable performance. Similarly, the
residual norm curves in Figure 10 shows that SA would have been competitive with
GSA for low accuracy runs. For higher accuracy runs and in later time steps when
the effect of crystal plasticity becomes more prominent, GSA performs the best.

6.3. Robustness Study for the Rbar Problem. For the Rbar problem, our
focus is on the robustness of the preconditioners. Since similar scalability behaviors
(as the spherical shell and Tbar problems) are observed here, we deliberately omit the
scalability results. The concern for solver robustness stems from the observation that
convergence deteriorates rapidly in later time steps when non-uniform deformation
occurs. To illustrate the relative performance of the different solvers, we use a test
problem with 380K unknowns running on 64 processors of the SP2-Blue computer.
Again, we use GMRES(m) with m = 100 and convergence criterion 10~%. To reduce
the eigendecomposition time in GSA, 128 subdomains are used, with each subdomain
having roughly about 3000 unknowns. The number of grid levels and near null space
vectors for GSA are 3 and 12 (ns=12), respectively, yielding the coarsest grid size of

15
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Fi1Gc. 9. Tbar Problem Using GSA Preconditioner
about 1500.

Timing results for all three AMGs are given in Figure 11 up to the 12th time
step. Each time step involves 3 to 6 linear solves, and the data given here are the
averages. We observe that in the first 6 time steps when the problem is still well-
behaved, SA without enriching the prolongation operator is adequate. Beyond the
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12th time step, both RS and SA fail to converge, but GSA continues to march on in
time with acceptable convergence rates, as depicted in Figure 12. We observe from
Figure 12 that a large fraction of the setup time is in the eigendecomposition. We
comment that this setup time can be improved by noting that the first 6 near null
space vectors are already available and only 6 additional ones are to be computed. In
the current implementation, we have not taken advantage of this fact.

7. Summary and Conclusion. In this paper we demonstrate the feasibility
of using algebraic multigrid for solving large-scale structural mechanics problems on
massively parallel processors. Scalability with mild dependence on the number of
processors is observed for the test problems. Future effort should focus on improving
efficiency by reducing memory traffic.

A difficulty of AMGs with structural mechanics problems is the ability to capture
low energy errors that are not reduced efficiently by both smoothing and coarse grid
correction. RS and SA have limited capabilities to capture these modes. Prolongation
enriching methods such as GSA helps to alleviate these problems. Superior conver-
gence has been observed for GSA compared to the RS and SA. Some shortcomings of
GSA are the expensive eigendecomposition in the preprocessing step and the poten-
tially large coarsest grid problem. Faster eigensolvers and faster parallel direct solvers
are critical for this class of efficient and robust multigrid solvers.
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